
On scattering systems related to the  group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 7901

(http://iopscience.iop.org/0305-4470/31/39/007)

Download details:

IP Address: 171.66.16.102

The article was downloaded on 02/06/2010 at 07:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/39
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 7901–7912. Printed in the UK PII: S0305-4470(98)89889-2

On scattering systems related to theSO(2, 1) group

G A Kerimov and M Sezgin
International Centre for Physics and Applied Mathematics, ICPAM, Trakya University, PO Box
126, Edirne, Turkey

Received 9 December 1997

Abstract. Scattering systems related to the noncompact groupsG in the sense that the
Hamiltonian of the system can be written as a function of the Casimir operator ofG are
considered. TheS-matrix for such systems are defined in terms of an intertwining operator
of underling symmetry groupG. The S-matrices for one-dimensional scattering systems with
SO(2, 1) symmetry group are classified.

1. Introduction

Integrable models provide the key to our understanding of more realistic interactions. They
appear in different areas of physics both in classic and quantum domains. The group
theoretical methods give a unified approach to a class of integrable systems related to Lie
groups [1]. In the quantum case, the HamiltonianH of the systems is expressed in terms
of the Casimir operatorC of symmetry groupG, i.e.H = f (C). Hence, this connection
allows one to find the wavefunctions, spectra andS-matrices, without a direct solution of the
Schr̈odinger equation. In this description, as in the conventional approach, theS-matrix is
defined through the asymptotic behaviour of the scattering wavefunctions. Hence, the natural
question arises as to whetherS-matrices can be calculated algebraically. The beginning of
such a program was presented in [2], where the authors suggested the construction of an
algebraic framework to calculate theS-matrix for the P̈oschl–Teller potential. However, the
method employed there used coordinate realization. Subsequently, Alhassid and co-workers
[3, 4] proposed a purely algebraic description of theS-matrix for scattering problems with
SO(2, 1) dynamical symmetry (for a generalization to any number of dimensions see [5–7]).
The recurrence relations for theS-matrix are obtained by writing the infinitesimal operators
of representations of the dynamical groupG in terms of those of asymptotic groupG0

describing the problem in the absence of interactions. However, since a general procedure
for the description of such connection formulae is absent, it is not so easy to find the explicit
form of theS-matrix with this method.

In a recent paper by one of the present authors [8] a new approach was initiated for
such scattering systems. In that paper theS-matrices for systems under consideration are
related to intertwining operators between Weyl equivalent principal series representations
of the dynamical groupG. In other words, theS-matrix for systems under consideration is
constrained to satisfy the equation

SUχ(g) = Uχ̃(g)S for all g ∈ G (1.1)

or

SUχ(b) = Uχ̃(b)S for all b ∈ g (1.2)
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whereUχ andUχ̃ are the Weyl equivalent principal series representation ofG while Uχ(b)

andUχ̃(b) are the corresponding representations of the algebrag of G. (The representations
Uχ and Uχ̃ have the same Casimir eigenvalues. Such representations are called Weyl
equivalent.) Equation (1.1) or (1.2) is actually used in deriving theS-matrix.

At this stage we note that the operatorS from Hχ to Hχ̃ is said to be intertwining if
relation (1.1) or (1.2) hold, whereHχ (Hχ̃ ) is the carry space of the representationUχ(Uχ̃ )

of G [9]. We shall see how one could in principle evaluate theS-matrix from (1.1) or
(1.2) without ever writing a Schrödinger equation, or wavefunctions, or ever mentioning
the concepts of space and time. Moreover, this method has led to the hope that one may
be able to classify and may be determine explicitly all theS-matrices for systems with
symmetry group. For simplicity we shall now restrict ourselves to a scattering problem
related to theSO(2, 1) symmetry group.

2. Calculation S-matrices for SO(2, 1) group

Let the scattering systems be related to the noncompact groupSO(2, 1) in the sense that the
Hamiltonian of the system can be written as a function of the Casimir operator ofSO(2, 1).
Then, theS-matrices for such systems can be defined from equation (1.1) or (1.2). To this
end, a few facts from representation theory of the groupSO(2, 1) are useful.

The unitary irreducible representations (UIRs) ofSO(2, 1) ≈ SU(1, 1) are known [9]
to form three series: principal, supplementary and discrete. It is also known that (see, e.g.
[10] and references to earlier work cited therein) only the principal series of the UIR of
SO(2, 1) (the dynamical symmetry group) goes over in the Inönü–Wigner contraction limit
into the UIR ofE(2) (an asymptotic symmetry group). Consequently, the relevant unitary
representations will be the principal series and we restrict the discussion to it.

The principal series ofSU(1, 1) are characterized by the pairχ = (ρ, ε), whereε is
equal to 0 or1

2, while 0 6 ρ < ∞. The representations specified by labelsχ = (ρ, ε)

andχ = (−ρ, ε) are equivalent. The operators of the representation of the Lie algebra of
SU(1, 1) associated with the principal series are denoted byJ

χ

i , i = 1, 2, 3. Jχi are the
Hermitian operators and satisfy the commutation relations

[J χ1 , J
χ

2 ] = −iJχ3 [J χ2 , J
χ

3 ] = iJχ1 [J χ3 , J
χ

1 ] = iJ χ2 (2.1)

whereJ χ3 is elliptic andJ χ1 , J
χ

2 are hyperbolic. The Casimir operator

C = −(J χ1 )2− (J χ2 )2+ (J χ3 )2 (2.2)

is identically a multiple of the unitC = − 1
4 − ρ2.

We take as a scattering basis of the carry space the eigenvector|m〉 of Jχ3 , where
m = n+ ε, n = 0,±1,±2, . . . . We introduce the following operators

J
χ
± = iJ χ1 ∓ J χ2 . (2.3)

The operatorsJ χ+ , J
χ
− , J

χ

3 act on the basis vectors in the following way [9]

J
χ

3 |m〉 = m|m〉 (2.4)

J
χ
± |m〉 = ( 1

2 − iρ ±m)|m± 1〉. (2.5)

Let us now show that equation (1.2) is sufficient to compute theS-matrix. To do this,
let us write equation (1.2) explicitly

SJ
χ

3 = J χ̃3 S (2.6)

SJ
χ
+ = J χ̃+S (2.7)

SJ
χ
− = J χ̃−S. (2.8)
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Applying both sides of equation (2.6) to the basis vector|m〉 we get

mS|m〉 = J χ̃3 S|m〉. (2.9)

Thus, the matrix of operatorS in this basis is diagonal

〈m′|S|m〉 = Smδm′m. (2.10)

The value of its diagonal elements can be defined from equation (2.7) or (2.8). Apply, for
example, both sides of equality (2.7) to the basis vector|m〉. As a result we obtain the
recurrence relation

( 1
2 − iρ +m)Sm+1 = ( 1

2 + iρ +m)Sm (2.11)

which implies that

Sm = c(ρ)
0( 1

2 + iρ +m)
0( 1

2 − iρ +m) (2.12)

wherec(ρ) is a constant with modulus= 1. The energy-dependent parameterρ is determined
by the relation between the HamiltonianH and the Casimir invariantC.

The Coulomb problem in two dimensions with Hamiltonian

H = 1

2
pipi + α√

xixi
(2.13)

wherepi andxi , i = 1, 2, are the linear momentum and coordinates, provides an example
of a quantum system with the symmetry groupSO(2, 1) [11]. On a subspace spanned by
eigenvector ofH , the infinitesimal operatorsJ χi , i = 1, 2, 3 are defined by

J
χ

i = (2H)−1/2Ai i = 1, 2 (2.14)

J
χ

3 = M (2.15)

whereAi andM are the Runge–Lenze vector and momentum, respectively

A1 = 1

2
(−Mp2− p2M)− x1√

x2
1 + x2

2

A1 = 1

2
(Mp1+ p1M)− x2√

x2
1 + x2

2

M = x1p2− x2p1.

(2.16)

The relation between the HamiltonianH and the Casimir operatorC is given by

H = − α2

2(C + 1
4)
. (2.17)

SinceH = k2/2 andC = − 1
4 − ρ2 it is clear that, for the Coulomb problem,ρ = α/k.

Hence formula (2.12) withρ = α/k is determined as theS-matrix for the two-dimensional
Coulomb problem.

Observe that, the operatorS (see equation (2.10)) does not mix states belonging to
different one-dimensional subspacesHm spanned by|m〉. This fact leads to the suggestion
that there might exist a class of one-dimensional potentials for which theS-matrix is
determined by numbersSm. This is, in fact, exactly what happens in the ‘potential group’
approach to scattering problems [12] (see also [2–7]) where the representations of groupG

describe states with the same energy but different potential strengths.
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Moreover, we can extract corresponding one-dimensional potentials from the Casimir
operator. To do this, let us consider, for example, a (reducible!) representationT (g) of
SO(2, 1) realized in the Hilbert space of square-integrable functionf (ξ) on an upper sheet
of hyperboloid [13]

ξ2
0 − ξ2

1 − ξ2
2 = 1 ξ0 > 0 (2.18)

with an invariant measure

dξ = dξ1 dξ2/ξ0. (2.19)

The representationT (g) is defined by

T (g)f (ξ) = f (ξg). (2.20)

The infinitesimal operatorsJi of this representation are given by

Jk = i
d

dt
T (gk(t))|t=0 k = 1, 2, 3 (2.21)

whereg1(t), g2(t) are the pure Lorentz transformations along the 1 and 2 axes, respectively,
while g3(t) is rotations in the 1–2 plane. Hence,

J1 = iξ0
∂

∂ξ1
J2 = iξ0

∂

∂ξ2
J3 = i

(
ξ2
∂

∂ξ1
− ξ1

∂

∂ξ2

)
. (2.22)

Now, we require the representation space to be irreducible. (We note that
representation (2.20) is decomposed onto the direct integral of principal series
representations(ρ, 0) [13].) Such a restriction is obtained if all functions are eigenfunctions
of the Casimir operator,

C = ∂2

∂ξ2
1

+ ∂2

∂ξ2
2

+
(
ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2

)2

+ ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2
(2.23)

of the Lie algebra (2.22), i.e.

Cf = (−ρ2− 1
4)f. (2.24)

Generally we may choose a large number of different coordinate systems on the hyperboloid.
The different choices of coordinate systems on the hyperboloid lead to different reductions of
the groupSO(2, 1) to its subgroup. The|m〉 basis is given by the decomposition according
to the compact subgroupSO(2, 1) ⊃ SO(2). As a prelude to this decomposition one
introduces the spherical coordinates on the hyperboloid (2.18) given by

ξ0 = coshα

ξ1 = sinhα cosϕ

ξ2 = sinhα sinϕ.

(2.25)

With the introduction of spherical coordinates and substitution of the functionf (α, ϕ)

by ω−1/29(α)eimϕ , whereω = sinhα is the weight function in the hyperboloid measure
dξ = sinhα dα dϕ, the Casimir eigenvalue equation reduces to the Schrödinger equation(

− d2

dα2
+ m

2− 1
4

sinh2 α

)
9(α) = E9(α) (2.26)

with

E = ρ2. (2.27)
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The Hamiltonian is now given by

H = −(C + 1
4) (2.28)

(on one-dimensional subspaceHm). Thus, the knowledge of the intertwining operator in
the SO(2) basis solves the scattering problem for the Pöschl–Teller potentialV (α) =
(m2− 1

4)/ sinh2 α,

Sm =
0(1− iρ)0( 1

2 + iρ +m)
0(1+ iρ)0( 1

2 − iρ +m) (2.29)

with ρ = √E following from (2.27) or (2.28). Since the Pöschl–Teller potential withm = 1
2

corresponds to the free case, we have chosen the phase factorc in (2.12) as

c(ρ) = 0(1− iρ)

0(1+ iρ)
. (2.30)

There are, however, a class of one-dimensional scattering systems related toSO(2, 1)
group which are not in the same above classes in the sense that theirS-matrices differ
from (2.12). In order to complete the program to find theS-matrices of problems with
the SO(2, 1) symmetry group, we have to calculate intertwining operators in all subgroup
bases. We find it expedient to use, for this purpose, equation (1.1).

As is well known, the groupSO(2, 1) has three subgroupsSO(2), SO(1, 1) andE(1)
generated byJ3, J1 andN = J2 + J3, respectively. Hence, we are interested in examining
the intertwining operator inSO(1, 1) andE(1) bases in which the operatorsJ1 andN are
diagonal, respectively.

The basis vectors will be denoted in the usual fashion by the kets

J1|µτ 〉 = µ|µτ 〉 〈µ′τ ′|µτ 〉 = δττ ′δ(µ− µ′) (2.31)

with −∞ < µ <∞, τ = ±1,

N |λ〉 = λ|λ〉 〈λ′|λ〉 = δ(λ− λ′) (2.32)

with −∞ < λ < ∞. Note that each UIR ofSO(1, 1) is doubly degenerate in principal
series of UIR ofSO(2, 1) andτ is the multiplicity label.

Now let us return to equation (1.1). By realizing the principal series ofSO(2, 1) on
suitable Hilbert spaces of some functions we can derive from equation (1.1) the functional
relations for the kernel ofS which allow us to obtain an integral representation for theS-
matrix. Thus, we can calculateS-matrix in a straightforward manner from its integral
formula. Without going into calculational details, we simply list the results (see the
appendix).

(a) In theSO(1, 1) basis:

〈µ′τ ′|S|µτ 〉 = δ(µ− µ′)Sττ ′(µ) (2.33)

where

S++(µ) = S−−(µ) = c

π
coshπρ0( 1

2 + iρ + iµ)0( 1
2 + iρ − iµ)

S+−(µ) = S−+(µ) = −i
c

π
sinhπρ0( 1

2 + iρ + iµ)0( 1
2 + iρ − iµ).

(2.34)

(b) In theE(1) basis:

〈λ′|S|λ〉 = δ(λ− λ′)Sλ
where

Sλ = cλ2iρ.
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Thus, we have come to a very important conclusion; there exist three classes of one-
dimensional scattering systems related to theSO(2, 1) group withS-matrices given by the
following.

(i) Class 1 (related to reductionSO(2, 1) ⊃ SO(2))

Sm =
(
Rm 0
0 Rm

)
(2.35)

where

Rm = c(ρ)
0( 1

2 + iρ +m)
0( 1

2 − iρ +m). (2.36)

(ii) Class 2 (related to reductionSO(2, 1) ⊃ SO(1, 1))

Sµ =
(
Rµ Tµ
Tµ Rµ

)
(2.37)

where

Rµ = c(ρ) coshπµ0( 1
2 + iρ + iµ)0( 1

2 + iρ − iµ)

Tµ = −ic(ρ)
1

π
sinhπρ0( 1

2 + iρ + iµ)0( 1
2 + iρ − iµ).

(2.38)

(iii) Class 3 (related to reductionSO(2, 1) ⊃ E(1))

Sλ =
(
Rλ 0
0 Rλ

)
(2.39)

where

R = c(ρ)λ2iρ. (2.40)

It should be noted that the potential functionsV (x) of the second class admit a double
degeneracy of the wavefunction for every positive value ofE (see equation (2.31)). The
situation here is analogous to that of the case of a square potential barrier [14]. The double
degeneracy corresponds to the fact that one may construct wavepackets which are partly
transmitted and partly reflected by the potentialV (x). According to (2.37) and (2.38), the
reflection and transmission coefficients are

|Rµ|2 = cosh2πµ

cosh2πµ+ sinh2πρ
(2.41)

|Tµ|2 = sinh2πρ

cosh2πµ+ sinh2πρ
(2.42)

respectively. It is also worth noting that, according to (2.36) and (2.40), the reflection
coefficient|Rm|2 = |Rλ|2 = 1 for all potentials of class I or II; hence the reflection is total.
This is a result of very general properties, shared by all one-dimensional Hamiltonians
which have continuous nondegenerate spectrum.

We conclude this section by extracting one-dimensional potentials from the Casimir
operator of the representation (2.20) ofSO(2, 1) corresponding to reductionsSO(2, 1) ⊃
SO(1, 1) and SO(2, 1) ⊃ E(1). According to this, one has to choose the following
coordinate systems on hyperbola.

(a) Hyperbolic

ξ0 = coshβ coshα

ξ1 = coshβ sinhα

ξ2 = sinhβ

(2.43)
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with −∞ < β <∞,−∞ < α <∞.
(b) Parabolic (or horispherical)

ξ0 = coshθ + x
2

2
eθ

ξ1 = sinhθ − x
2

2
eθ

ξ2 = xeθ

(2.44)

with −∞ < θ < ∞,−∞ < x < ∞. The invariant measure on the hyperboloid in these
coordinate systems are

dξ = coshβ dβ dα (2.45)

and

dξ = eθ dθ dx (2.46)

respectively.
By arguments very similar to those used to obtain (2.26) we can show that [15, 16]

H = − d2

dβ2
+ µ2+ 1

4

cosh2 β
for SO(2, 1) ⊃ SO(1, 1) (2.47)

and

H = − d2

dθ2
+ λ2

e2θ
for SO(2, 1) ⊃ E(1) (2.48)

respectively. In both cases, the group HamiltoniansH are related to the Casimir invariant
C by H = −(C + 1

2). Therefore, formulae (2.37) and (2.39) atρ = √E determine the
scattering matrices for the potentialsV = (µ2 + 1

4)/ cosh2 β andV = λ2/e2θ presented in
figures 1 and 2, respectively. Besides the above-mentioned applications, it is expected that
using the other realizations of the representation ofSO(2, 1) it will be possible to construct
a family of new potentials.

Figure 1. The potential functionV (β) = (µ2 + 1
4)/ cosh2 β is plotted forµ = 0.9. The axes

are in arbitrary units.
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Figure 2. The potential functionV (θ) = λ2/ exp(2θ) is plotted forλ = 0.9 The axes are in
arbitrary units.
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Appendix

In this section we calculate intertwining operators of the groupSO(2, 1) for all subgroup
bases.

In order to fix notation and terminology we start with a brief description of elementary
(or nonunitary principal series) representationsUj , j ∈ C of the groupSO(2, 1). The
representationsUj , can be realized in the space of infinitely differentiable functionF(ζ )
on the upper sheet of the two-dimensional coneζ 2

0 − ζ 2
1 − ζ 2

2 = 0, ζ0 > 0, homogeneous of
degreej [13]

F(aζ ) = ajF (ζ ) a > 0. (A.1)

The representationsUj are given by

Uj(g)F (ζ ) = F(ζg). (A.2)

Note that we considerSO(2, 1) as acting on three-dimensional pseudo-Euclidean space
R1,2 with bilinear form [ζ, η] = ζ0η0 − ζ1η1 − ζ2η2 on the right. In accordance with this
we shall write the vector in the row formζ = (ζ0, ζ1, ζ2).

As mentioned, the different choices of coordinate systems on the cone lead to different
subgroup reductions ofSO(2, 1).

(i) The spherical coordinate system corresponding to the subgroup reductionSO(2, 1) ⊃
SO(2) is given by

ζ = ωn n = (1, cosϕ, sinϕ) (A.3)

where 06 ω <∞, 0< ϕ < 2π .
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From (A.1) it follows that the homogeneous function is defined uniquely by its values
on the circleS1 ∈ n = (1, cosϕ, sinϕ). Consequently elementary representations of
SO(2, 1) can be realized on the spaceC∞ of infinitely differentiable functionsf (n) ≡
F(1, cosϕ, sinϕ) on S1

Uj(g)f (n) =
(ωg
ω

)j
f (ng) (A.4)

whereωg andng are determined from the parametrization (A.3) ofζg = ζg. Representations
(A.4) with j = − 1

2+ iρ can be extended (by an appropriate completion ofC∞) to principal
series(ρ, 0) of SO(2, 1) on the Hilbert spaceL2(S1) with inner product

(f, f ′) = 1

2π

∫ 2π

0
f (ϕ)f ′(ϕ) dϕ.

The representations labelled byj and−1− j are equivalent.
By virtue of the theorem on kernel, the operatorS can be defined as

(Sf )(n) =
∫
S1
K(n, n′)f (n′) dn′ (A.5)

where dn ≡ dϕ is the invariant measure onS1. Thus, equation (1.1) will serve to fix the
dependence of the kernelK(n, n′) on n andn′. Equality (1.1) implies that

(SUj (g)f )(n) = (U−1−j (g)Sf )(n). (A.6)

So, the kernelK(n, n′) is constrained to satisfy the functional equation

K(ng, n
′
g) =

(ωg
ω

)1+j (ω′g
ω′

)1+j
K(n, n′). (A.7)

In deriving equation (A.7) we have used the relation

dng =
(ωg
ω

)−1
dn.

The kernelK is, up to a constantκ(j), uniquely determined and is given by

K(n, n′) = κ(j)[n, n′]−1−j (A.8)

where [n, n′] = n0n
′
0 − n1n

′
1 − n2n

′
2. The verification of equation (A.8) is based on the

relation

[ng, n
′
g] =

(ωg
ω

)−1
(
ω′g
ω′

)−1

[n, n′] (A.9)

which is obviously a consequence of the relation

[ζg, ζ
′
g] = [ζ, ζ ′]

whereζg = ζg, ζ ′g = ζ ′g.
The module of constantκ is fixed by the normalization relation, which gives

|κ|2 = 1

2π
ρ tanhπρ. (A.10)

Thus

(Sf )(ϕ) = 2j√
π

0(1+ j)
0(− 1

2 − j)
c

∫ 2π

0
dϕ′[1− cos(ϕ − ϕ′)]−1−j f (ϕ′) (A.11)

where c is the phase factor. (For the sake of brevity, the value of functionf at
n = (1, cosϕ, sinϕ) is denoted byf (ϕ).)
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Taking into account the functions|m〉 = eimϕ forms SO(2) bases inL2(S1), we have

〈m′|S|m〉 = δmm′Sm (A.12)

where

Sm = 1

2
√
π

0(1+ j)
0(− 1

2 − j)
c

∫ 2π

0

∣∣∣sin
ϕ

2

∣∣∣−2−2j
e−imϕ dϕ. (A.13)

Using formula 3.829(1) of [17], we obtain from equation (A.13)

Sm = c
0( 1

2 + iρ +m)
0( 1

2 − iρ +m)
which, of course, coincides with result (2.12).

(ii) The hyperbolic coordinate system corresponding to the subgroup reduction
SO(2, 1) ⊃ SO(1, 1) is given by

ζ = w(coshα, sinhα, τ) (A.14)

where 06 w <∞,−∞ < α <∞ and

τ =
{

1 if ζ2 > 0

−1 if ζ2 < 0.

Due to the homogeneity condition (A.1), the elementary representations ofSO(2, 1) can be
realized on a space of functions(f+(α), f−(α)), fτ (α) = F(coshα, sinhα, τ), where the
τ -label specifies the sheet. In this realization the operatorsUj(g) are given by

(Uj (g)f )τ (α) =
(wg
w

)j
fτ ′(αg) (A.15)

wherewg, αg andτ ′ are determined from the parametrization (A.14) ofζg = ζg.
Formula (A.15) atj = − 1

2 + iρ gives principal series representations ofSO(2, 1) on
the Hilbert spaceL2(H) with inner product

(f, g) = 1

2π

∑
r

∫ ∞
−∞

fτ (α)gτ (α) dα. (A.16)

By arguments very similar to those used to obtain (A.11) we can show that the operatorS

in this realization may be written as

(Sf )τ (α) = 2j√
π

0(1+ j)
0(− 1

2 − j)
c
∑
τ ′=±1

∫ ∞
−∞

dα′ [cosh(α − α′)− ττ ′]−1−j fτ ′(α′). (A.17)

We note that equation (A.17) can be derived from equation (A.11) with the aid of the
following relation

f (ϕ) =
{
(coshα)−j f+(α) if 0 6 ϕ < π

(coshα)−j f−(α) if π 6 ϕ < 2π
(A.18)

for cosϕ = tanhα.
This then gives the integral representation of the matrix elements ofS in SO(1, 1) basis.

Taking into account that

|µ+〉 =
(

eiµα

0

)
|µ−〉 =

(
0

eiµα

)
(A.19)

we have

〈µ′τ ′|S|µτ 〉 = δ(µ− µ′)Sττ ′ (A.20)
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where

S++ = S−− = 2j√
π

0(1+ j)
0(− 1

2 − j)
c

∫ ∞
−∞

dα (coshα − 1)−1−je−iµα (A.21)

S−+ = S+− = 2j√
π

0(1+ j)
0(− 1

2 − j)
c

∫ ∞
−∞

dα (coshα + 1)−1−je−iµα. (A.22)

The explicit expression forSττ ′ is then (see formulae 3.542(1) of [17])

S++ = S−− = c

π
coshπµ0( 1

2 + iρ + iµ)0( 1
2 + iρ − iµ) (A.23)

S+− = S−+ = −i
c

π
sinhπρ0( 1

2 + iρ + iµ)0( 1
2 + iρ − iµ). (A.24)

(iii) The parabolic (or horispherical) coordinate system corresponding to the subgroup
reductionSO(2, 1) ⊃ E(1) is given by

ζ = W
(

1+ x2

2
,

1− x2

2
, x

)
(A.25)

where 06 W < ∞,−∞ < x < ∞. Consequently principal series ofSO(2, 1) can be
realized on the Hilbert spaceL2(R) of square integrable function

f (x) ≡ F
(

1+ x2

2
,

1− x2

2
, x

)
on lineR with inner product

(f, f ′) = 1

2π

∫ ∞
−∞

f (x)f ′(x) dx. (A.26)

It follows from (A.1) and (A.2) that inL2(R) the operators of the representations take the
form

(Uj (g)f )(x) =
(
Wg

W

)j
f (xg) (A.27)

whereWg andxg are determined from the parametrization (A.25) ofζg = ζg.
The operatorS in this realization is given by

(Sf )(x) = 2j√
π

0(1+ j)
0(− 1

2 − j)
∫ ∞
−∞
|x − x ′|−2−2j f (x ′) dx ′. (A.28)

Note that equation (A.28) can also be derived from equation (A.11) with the aid of the
relation

f (ϕ) =
(

2

1+ x2

)j
f (x) for cosϕ = 1− x2

1+ x2
.

This then gives the integral representation of the matrix element ofS in theE(1) basis. As
a result

〈λ′|S|λ〉 = δ(λ− λ′)Sλ (A.29)

where

Sλ = 2j√
π

0(1+ j)
0(− 1

2 − j)
c

∫ ∞
−∞

dx |x|−2−2je−iλx (A.30)

= cλ2iρ (A.31)

(see equation 3.761(9) of [17]).
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